We’re now coming to the end of Pride Month, but that doesn’t mean it’s time to stop celebrating! In keeping with our celebration of queer mathematicians this month, we wanted to take some time to highlight the works of LGBT+ mathematicians throughout history. While it’s impossible to say how some of these individuals would have identified according to our modern labels, it’s still important to recognize that queer people have always existed, and have made and continue to make valuable contributions to the field of mathematics. It’s challenging to find records of LGBT+ people who lived in times when they would have been persecuted for being themselves, and because of that many contributions made by queer individuals have slipped through the cracks of history. So let’s take the time to highlight the works we can find, acknowledge the ones we can’t, and celebrate what the LGBT+ community has brought to the world of mathematics.
If you ask anyone to name a queer mathematician, chances are—well, chances are they won’t have an answer, because unfortunately the LGBT+ community is largely underrepresented in mathematics. But if they do have an answer, they’ll likely say Alan Turing. Turing (1912-1954) is widely considered the father of theoretical computer science, largely due to his invention of the Turing machine, which is a mathematical model that can implement any computer algorithm. So if you’re looking for an example of his work, look no further than the very device you’re using to read this! He also played a crucial role in decoding the Enigma machine in World War II, which was instrumental in the Allies’ victory. If you want to learn more about cryptography and how the field has evolved since Turing’s vital contributions, check out these Maple MathApps on Vigenère ciphers, password security, and RSA encryption. And as if that wasn’t enough, Turing also made important advances in the field of mathematical biology, and his work on morphogenesis remains a key theory in the field to this day. His mathematical model was confirmed using living vegetation just this year!
In 1952, Turing’s house was burgled, and in the course of the investigation he acknowledged having a relationship with another man. This led to both men being charged with “gross indecency”, and Turing was forced to undergo chemical castration. He was also barred from continuing his work in cryptography with the British government, and denied entry to the United States. He died in 1954, from what was at the time deemed a suicide by cyanide poisoning, although there is also evidence to suggest his death may have been accidental. Either way, it’s clear that Turing was treated unjustly. It’s an undeniable tragedy that a man whose work had such a significant impact on the modern era was treated as a criminal in his own time just because of who he loved.
Antonia J. Jones (1943-2010) was a mathematician and computer scientist. She worked at a variety of universities, including as a Professor of Evolutionary and Neural Computing at Cardiff University, and lived in a farmhouse with her partner Barbara Quinn. Along with her work with computers and number theory, she also wrote the textbook Game Theory: Mathematical Models of Conflict. If you want to learn more about that field, check out this collection of Maple Learn documents on game theory. As a child, Jones contracted polio and lost the use of both of her legs. This created a barrier to her work with computers, as early computers were inaccessible to individuals with physical disabilities. Luckily, as the technology developed and became more accessible, she was able to make more contributions to the field of computing. And that’s especially lucky for banks who like having their money be secure—she then exposed several significant security flaws at HSBC! That just goes to show you the importance of making mathematics accessible to everyone—who knows how many banks’ security flaws aren’t being exposed because the people who could find them are being stopped by barriers to accessibility?
James Stewart (1941-2014) was a gay Canadian mathematician best known for his series of calculus textbooks—yes, those calculus textbooks, the Stewart Calculus series. I’m a 7th edition alumni myself, but I have to admit the 8th edition has the cooler cover. To give you a sense of his work, here’s an example of an optimization problem that could have come straight from the pages of Stewart Calculus. Questions just like this have occupied the evenings of high school and university students for over 25 years. I suspect not all of those students really appreciate that achievement, but nonetheless his works have certainly made an impact! Stewart was also a violinist in the Hamilton Philharmonic Orchestra, and got involved in LGBT+ activism. In the early 1970s, a time where acceptance for LGBT+ people was not particularly widespread (to put it lightly), he brought gay rights activist George Hislop to speak at McMaster University. Stewart is also known for the Integral House, which he commissioned and had built in Toronto. Some may find the interior of the house a little familiar—it was used to film the home of Vulcan ambassador Sarek in Star Trek: Discovery!
Agnes E. Wells (1876-1959) was a professor of mathematics and astronomy at Indiana University. She wrote her dissertation on the relative proper motions and radial velocities of stars, which you can learn more about from this document on the speed of orbiting bodies and this document on linear and angular speed conversions. Wells was also a woman’s rights activist, and served as the chair of the National Woman’s Party. In her activism, she argued that the idea of women “belonging in the home” overlooked unmarried women who needed to earn a living—and women like her who lived with another woman as their partner, although she didn’t mention that part. There is a long-standing prejudice against women in mathematics, and it’s the work of women like Wells that has helped our gradual progress towards eliminating that prejudice. To be a queer woman on top of that only added more barriers to Wells’ career, and by overcoming them, she helped pave the way for all queer women in math.
Now, there is a fair amount of debate as to whether or not our next mathematician really was LGBT+, but there is sufficient possibility that it’s worth giving Sir Isaac Newton a mention. Newton (1642-1727) is most known for his formulation of the laws of gravity, his invention of calculus (contended as it is), his work on optics and colour, the binomial theorem, his law of temperature change… I could keep going; the list goes on and on. It’s unquestionable that he had a significant impact on the field of mathematics, and on several other fields of study to boot. While we can’t know how Newton may have identified with any of our modern labels, we do know that he never married, nor “had any commerce with women”[a], leading some to believe he may have been asexual. He also had a close relationship with mathematician Nicolas Fatio de Duillier, which some believe may have been romantic in nature. In the end, we can never say for sure, but it’s worth acknowledging the possibility. After all, now that more and more members of the LGBT+ community are feeling safe enough to tell the world who they are, we’re getting a better sense of just how many people throughout history were forced to hide. Maybe Newton was one of them. Or maybe he wasn’t, but maybe there’s a dozen other mathematicians who were and hid it so well we’ll never find out. In the end, what matters more is that queer mathematicians can see themselves in someone like Newton, and we don’t need historical certainty for that.
So there you have it! Of course, this is by no means a comprehensive list, and it’s important to recognize who’s missing from it—for example, this list doesn’t include any people of colour, or any transgender people. Sadly, because of the historical prejudices and modern biases against these groups, they often face greater barriers to entry into the field of mathematics, and their contributions are frequently buried. It’s up to us in the math community to recognize these contributions and, by doing so, ensure that everyone feels like they can be included in the study of mathematics.